

ООО «НПФ Мехатроника-Про»

Учебный стенд тип «К» с отладочным комплектом МСВ-04

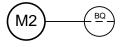
Содержание

Учебные стенды: Общие сведения	3
Учебный стенд <i>mun «К»</i> с отладочным комплектом МСВ-04	
Отладочный комплект МСВ-04 (в составе стендов)	10
Информация о компании	
Контактная информация	

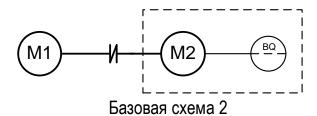
Учебные стенды: Общие сведения

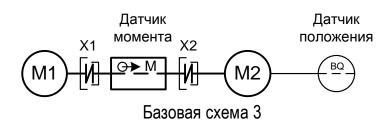
Учебные стенды могут быть использованы при обучении бакалавров, магистров, на курсах повышения квалификации по электротехническим направлениям и специальностям, в первую очередь «Электротехника, электромеханика, электротехнологии», «Электропривод и автоматика промышленных установок и технологических комплексов» и др., а так же для научных исследований в ходе аспирантской подготовки.

Стенды сопровождаются комплектом методических материалов по основным дисциплинам.


Ниже в таблицах приведены основные характеристики учебных стендов ООО «НПФ Мехатроника-Про», а также примерный перечень дисциплин и лабораторных работ, в которых они могут быть полезны.

Основные технические характеристики стендов									
		Учебный стенд							
	Тип К	Тип 1	Тип 2	Тип 3	Тип 4	Тип 5	Тип 6		
Конструктивное исполнение	Кейс	и́с Небольшой переносной шкаф		Лабораторный стол + агрегат		Шкаф + агрегат			
Двигатель 1	АД/БДПТ/ ДПТ	ДПТ	ДПТ	ДПТ	ДПТ	ДПТ	ДПТ		
Двигатель 2	_	АД	БДПТ	АД	СД	АД	СД		
Мощность двигателей	,	40-100 Вт			0,55-2,2 кВт				
Датчик момента		Нет			Да				
Энкодер				Да					
Возможность изменения схемы		Нет		Да		Нет			
Компьютер	По до	По договоренности			облок	По догово- ренности			
Дополнительный блок измерения		Нет			6 каналов,	до 400 кГц			
Индикатор момента	Нет			Нет Есть		Опция			
Индикатор скорости	Нет			Ed	ть	Опция			
Прибор DMG	Нет		Есть Опци			RN			
Доступ к электронным платам	При напряжении до 36 В			Не	PT .				
Примерная стоимость									




Типовые силовые агрегаты							
Тип	дпт	АД (СД)	Датчик момента	Энкодер	Схема		
СЭМ-6.1	-	АД 3 фазы, 220 В, 70 Вт					
CЭM-6.2	24 В, 40 Вт	_	Нет	500 имп/об	1		
СЭМ-6.3	-	БДПТ 3 фазы, 36 B, 92 Вт					
СЭМ-5-А-П	24 В, 40 Вт	АД 3ф, 220 В, 70 Вт	Нет	500 имп/об	2		
СЭМ-5-Б-П	24 В, 40 Вт	БДПТ 3 фазы, 36 В, 92 Вт	1161	300 MINITI/00	2		
СЭМ-4-0,75-1500	0,75 кВт, 1500 об/мин, 220/220 В	АД 1,1 кВт, 1500 об/мин, 380 В	М _Н = 19 Нм	2500 имп/об			
CЭM-4-1,6-3000	1,6 кВт, 3000 об/мин, 220/220 В	АД 2,2 кВт, 3000 об/мин, 380 В	Мн = 19 Нм	2500 имп/об	3		
СЭМ-4-2,2-2200	2,2 кВт, 2200 об/мин, 220/220 В	АД 3 кВт, 1500 об/мин	М _Н = 49 Нм	2500 имп/об			

По согласованию возможно изготовление других агрегатов типа АД-АД, ДПТ-АД, ДПТ-СД, АД-СД с желаемой номинальной скоростью и мощностью.

Базовая схема 1

Примерный перечень дисциплин и лабораторных работ, в которых могут быть использованы учебные стенды	Тип К-АД	Тип К-БДПТ	Тип К-ДПТ	Тип 1 (АД-ДПТ)	Тип 2 (БДПТ-ДПТ)	Тип 3, 5 (АД-ДПТ)	Тип 4, 6 (СД-ДПТ)
1. «Электропривод», «Теория электропривода»							
1.1. Исследование механических и электромеханических характеристик асинхронного двигателя с короткозамкнутым ротором при частотном и векторном управлении				√		√ +	
1.2. Исследование механических и электромеханических характеристик двигателя постоянного тока				✓	✓	√ +	√ +
1.3. Исследование механических и электромеханических характеристик синхронного двигателя при частотном и векторном управлении							√ +
1.4. Исследование механических и электромеханических характеристик бесколлекторного двигателя постоянного тока					√		
2. «Системы управления электроприводами»							
2.1. Исследование механических и электромеханических характеристик частотнорегулируемого электропривода с замкнутой и разомкнутой САУ				√		√ +	√ +
2.2. Исследование механических и электромеханических характеристик транзисторного электропривода постоянного тока с замкнутой и разомкнутой САУ				√	√	√ +	√ +
2.3. Синтез регуляторов и настройка двухконтурной/трехконтурной системы подчиненного регулирования электропривода постоянного тока	√	✓	✓	√	✓	√ +	√ +
2.4. Синтез регуляторов и настройка асинхронного электропривода со скалярным/векторным управлением	√			√		√	
2.5. Синтез регуляторов и настройка синхронного электропривода со скалярным/векторным управлением		✓-			✓-		√ +
2.6. Исследование работы регуляторов (П, ПИ, ПИД) 2.7. Исследование фильтров	✓ ✓	✓ ✓	✓ ✓	√ ✓	✓ ✓	✓	✓ ✓
2.7. исследование фильтров	•	•	,	•	V	•	•

Примерный перечень дисциплин и лабораторных работ, в которых могут быть использованы учебные стенды	Тип К-АД	Тип К-БДПТ	Тип К-ДПТ	Тип 1 (АД-ДПТ)	Тип 2 (БДПТ-ДПТ)	Тип 3, 5 (АД-ДПТ)	Тип 4, 6 (СД-ДПТ)
3. «Частотно-регулируемый электропривод в АСУ ТП»							
3.1. Построение структуры, настройка и исследование систем скалярного/векторного управления асинхронным двигателем	✓			✓		√ +	
3.2. Построение структуры, настройка и исследование систем скалярного/векторного управления синхронным двигателем		✓-			✓-		√ +
3.3. Исследование частотно-регулируемого электропривода при работе на нагрузку с заданной механической характеристикой						✓	✓
3.4. Использование фильтров dU/dt и синусного на выходе ПЧ						✓	✓
4. «Силовые преобразовательные устройства и микропроцессорные системы»							
4.1. Исследование энергетических показателей транзисторного электропривода постоянного тока (КПД, потребляемый из сети ток и т. п.)						√	√
4.2. Исследование энергетических показателей асинхронного электропривода (КПД, соsφ под нагрузкой, потребляемый из сети ток и т. п.)						✓	✓
4.3. Построение микропроцессорных транзисторных электроприводов постоянного тока		✓	✓	✓	✓	✓-	√-
4.4. Построение микропроцессорных транзисторных электроприводов переменного тока	✓	√-		✓	√-	✓-	√ -
4.5. Исследование транзисторного преобразователя постоянного тока		✓	✓	✓	✓	√ +	√ +
4.6. Исследование трехфазного транзисторного инвертора		✓-			√	√ +	√ +
5. «Нелинейные и цифровые САУ»							
5.1. Исследование влияния квантования по времени и по уровню на работу САУ электропривода	✓	✓	√	√	√	√	√
5.2. Исследование влияния ограничений координат на работу электропривода	✓	✓	✓	✓	✓	✓	✓

Примерный перечень дисциплин и лабораторных работ, в которых могут быть использованы учебные стенды		Тип К-АД	Тип К-БДПТ	Тип К-ДПТ	Тип 1 (АД-ДПТ)	Тип 2 (БДПТ-ДПТ)	Тип 3, 5 (АД-ДПТ)	Тип 4, 6 (СД-ДПТ)
6.	«Электропривод постоянного тока»		✓	✓	✓	√	√ +	√ +
7.	«Электропривод переменного тока»	√	✓-		√	√-	√ +	√ +
8. элект	«Векторное управление роприводами переменного тока»	√	√-		✓	✓-	√ +	√ +
9. техни	«Электронная и микропроцессорная ка»	✓	✓	√	√	√	√-	√-
10. систе	«Программирование встроенных м»	√	✓	✓	✓	✓	✓-	✓-

Обозначения в таблице:

- ✓ может применяться;
- ✓+ преимущества при применении;
- \checkmark ограничения при применении.

Учебный стенд *mun «К»* с отладочным комплектом МСВ-04

Учебный стенд тип «К» представляет собой отладочный комплект МСВ-04, размещенный в одном кейсе с двигателем и источником питания.

Стенд тип «К» предназначен для обучения программированию в среде MexBIOS Development Studio и создания алгоритмов и схем управления различными двигателями. Стенд при напряжении питания силовых цепей до 36 В позволяет также исследовать элементы микропроцессорных и преобразовательных электронных схем.

Выпускаются три варианта стендов данного типа:

- 1) с двигателем постоянного тока, тип «К-ДПТ» (МСВ-04-DC);
- 2) с асинхронным двигателем, тип «К-АД» (МСВ-04-АС);
- 3) с бесколлекторным двигателем постоянного тока, тип «К-БДПТ» (МСВ-04-BLDC).

Во всех случаях двигатели укомплектованы датчиками скорости – энкодерами.

Стенд включает в себя:

- процессорный модуль на базе микроконтроллера **TMS320F28335** "**Delfino**" (отладочный модуль MChip176-28335), **TMS320F28035** "**Piccolo**" (отладочный модуль MChip80-28035) или **TMS320LF2812** (отладочный модуль mZdsp-2812);

- интерфейсную плату с жидкокристаллическим индикатором, кнопками, элементами дискретного и аналогового ввода-вывода;
 - силовую плату с силовым модулем и блоком питания;
 - двигатель заданного типа со встроенным или пристроенным энкодером;
 - панель ручного управления с элементами управления и индикации;
 - блок питания;
 - кейс габаритами 470x350x170 мм.

Стенд может комплектоваться ноутбуком или компьютером.

Комплект поддерживает большинство необходимых функций стандартных сервоприводов и преобразователей частоты за счет присутствия встроенного ПЗУ, ЦАП, АЦП, ЖК-индикатора, кнопок и др. Алгоритм работы комплекта определяется прикладной программой, разрабатываемой пользователем самостоятельно или на основе прилагаемых примеров.

Связь стенда с компьютером может осуществляться через интерфейс RS-232, RS-485 или USB.

Учебный стенд питается от сети переменного тока 1 фаза 50 Гц 220 В +10%-15%.

В комплект включены:

- паспорт стенда, совмещенный с руководством по эксплуатации;
- методические указания к выполнению лабораторных работ по курсу «Системы управления электроприводами»;
- демонстрационные проекты управления двигателем и нагрузочным агрегатом.

Отладочный комплект МСВ-04 (в составе стендов)

Комплект MCB (Motor Control Board) с открытой программной платформой предназначен для изучения принципов построения современных систем управления электроприводов, а также для разработки и тестирования их программного обеспечения, в частности:

- управления координатами электропривода (ток, крутящий момент, скорость, положение) и настройки защит электродвигателя;
 - телесигнализации, телеуправления и цифровых коммуникаций;
 - человеко-машинного интерфейса и управления технологическим процессом.

Комплект способен управлять электроприводом на базе *трехфазного* асинхронного электродвигателя, синхронного электродвигателя, коллекторного или бесколлекторного двигателя *постоянного тока* или корректором сети, а также в двухинверторном исполнении комплект поддерживает одновременное управление двумя двигателями.

Комплект поставляется с процессорным модулем на базе микроконтроллера **TMS320F28335** "**Delfino**" (отладочный модуль MChip176-28335), **TMS320F28035** "**Piccolo**" (отладочный модуль MChip80-28035) или **TMS320LF2812** (отладочный модуль mZdsp-2812).

Комплект поддерживает большинство необходимых функций стандартных сервоприводов и преобразователей частоты за счет присутствия встроенного ПЗУ, ЦАП, АЦП, ЖК-индикатора, кнопок и др. Алгоритм работы комплекта определяется

прикладной программой, разрабатываемой пользователем самостоятельно или на основе прилагаемых примеров.

Основные	характеристики комплекта					
	– Синхронный					
Типы электродвигателей	– Асинхронный					
	 Бесколлекторный постоянного тока 					
	 Коллекторный постоянного тока 					
	 MexBIOS™, с возможностью 					
Программная платформа	перепрограммирования алгоритмов работы					
	блока в среде визуальной разработки программ					
Микроконтроллер системы	- TMS320LF2812, TMS320F2803x, TMS320F2823x,					
управления	TMS320F2833x					
Интерфейс датчиков обратной	– Тахогенератор					
СВЯЗИ	 Инкрементный энкодер 					
СБЯЗИ	Датчики Холла (3 фазы)					
Силовое питание	 От источника переменного тока: не более 400 В 					
Силовое питание	 От источника постоянного тока: не более 600 В 					
Допустимый силовой ток	 Длительный ток инвертора: не более 5 А 					
(радиатор – алюминиевая	 Максимальный ток инвертора: не более 35 А 					
пластина)						
Базовая частота	 В контуре положения: до 500 Гц 					
дискретизации	 В контуре скорости: до 1 кГц 					
•	— В контуре тока: до 12 кГц					
Аналоговые входы (групповая	— 4 (-5+5 B или 010 B)					
развязка)	0 (0 5 D)					
Аналоговые выходы	- 2 (0+5 B)					
(групповая развязка)	_ 4					
Дискретные выходы (групповая развязка)	- 4					
Релейный выход	_ 1					
т елеиный выход	- RS-232					
Коммуникации	- RS-485					
Коммуникации	- 103-403 - USB					
Кнопки управления	- 12					
	ЖК индикатор					
Индикация	— жих индикатор — светодиоды					
Напряжение питания цепей	— 1824 В либо ~220 В					
управления	1027 D JIPIOO 220 D					
Габариты (Д×Ш×В)	- (300×210×65)					

Информация о компании

«НПФ Компания Мехатроника-Про» специализируется разработке на обеспечения для систем управления электродвигателями программного программируемыми логическими контроллерами, а также осуществляет выполнение контрактных НИОКР В области создания систем управления электроприводами.

В 2012 году ООО «НПФ Мехатроника-Про» вошло в сообщество TI Design Network компании Texas Instruments.

Design Network – международное сообщество хорошей репутацией, признанных компаний С Instruments предлагающих товары и услуги, дополняющие решения компании Texas Instruments. Продукты и услуги - это широкий круг примеров разработки, проектов и услуг,

выполняемых под ключ, системные модули, встроенное программное обеспечение, инжиниринговые услуги и средства разработки, которые помогают потребителям ускорить вывод собственного продукта на рынок.

Услуги, осуществляемые ООО «НПФ Мехатроника-Про» на рынке:

1. Контрактная разработка электронных блоков управления электродвигателями

Наша компания предоставляет полный спектр услуг по разработке и производству опытных образцов изделий заказчика, подготавливает полный комплект конструкторской документации для производства изделий на территории заказчика:

- разработка электрических схем;
- разработка печатных плат с учетом конструктивных особенностей изделия, как для силовой части, так и для пульта управления с индикатором;
- разработка тестового программного обеспечения и отладка периферии;
- изготовление и отладка опытных образцов с программным обеспечением.

2. Разработка сервисного программного обеспечения

- Разработка сервисного программного обеспечения включает полный цикл. работ от поддержания протоколов обмена до дизайна виртуального пульта управления. В частности компания «НПФ Мехатроника-Про» обеспечивает:
- разработку и поддержку требуемых протоколов обмена;
- среды-конфигуратора создание ДЛЯ электронного блока управления электродвигателем с возможностью сохранения параметров и результатов его работы на компьютере пользователя;
- программного пульта создание управления возможностью его конфигурирования в виде электронных таблиц, виртуальных приборов, осциллографов и т.д.;

- поддержку механизма исполнения программ пользователя без компиляции исходного текста в интерпретаторе;
- среда разработки сервисного программного обеспечения: Borland C++ Builder 6.

3. Разработка встроенного программного обеспечения

Богатый опыт разработки встроенного программного обеспечения накопленный сотрудниками компании позволяет успешно реализовывать проекты для устройств управления электродвигателями с повышенной надежностью применяемых в аэрокосмической промышленности, системах специально применения, а также системах общепромышленного исполнения.

4. Технологический консалтинг

Компания «НПФ Мехатроника-Про» предоставляет услуги по консалтингу в области разработки электронных блоков управления электродвигателями, их настройки на технологический процесс, а также разработки встроенного и сервисного программного обеспечения.

Обучение программированию микроконтроллеров серии TMS320xx производства Texas Instruments, микроконтроллера 1867BЦ5T производства НИИ ЭТ (г. Воронеж).

5. Оснащение научно-исследовательских и учебных лабораторий

Компания «НПФ Мехатроника-Про» оснащает лаборатории для изучения и разработок электроприводов в проектных организациях и университетах. Оснащение происходит учебными комплектами собственной разработки и необходимым методическим обеспечением.

Контактная информация

ООО "НПФ Мехатроника-Про" 634063 г. Томск ул. Мичурина 59А-19

Тел.: +7 (3822) 252-842

E-Mail: support@mechatronica-pro.com

http://mechatronica-pro.com